skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cheng, Du"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2026
  2. Abstract Mixed-space cluster expansion (MSCE), a first-principles method to simultaneously model the configuration-dependent short-ranged chemical and long-ranged strain interactions in alloy thermodynamics, has been successfully applied to binary FCC and BCC alloys. However, the previously reported MSCE method is limited to binary alloys with cubic crystal symmetry on a single sublattice. In the current work, MSCE is generalized to systems with multiple sublattices by formulating compatible reciprocal space interactions and combined with a crystal-symmetry-agnostic algorithm for the calculation of constituent strain energy. This generalized approach is then demonstrated in a hypothetical HCP system and Mg-Zn alloys. The current MSCE can significantly improve the accuracy of the energy parameterization and account for all the fully relaxed structures regardless of lattice distortion. The generalized MSCE method makes it possible to simultaneously analyze the short- and long-ranged configuration-dependent interactions in crystalline materials with arbitrary lattices with the accuracy of typical first-principles methods. 
    more » « less